Iridium-Catalyzed Asymmetric Isomerization of Primary Allylic Alcohols

Luca Mantilli, David Gérard, Sonya Torche, Céline Besnard, and Clément Mazet Angew. Chem. Int. Ed. 2009, Early View

Nate Ware, Wipf Group Current Literature 06/20/09

Metal Catalyzed Isomerizations of Allylic Alcohols to Carbonyl Compounds

Chem. Rev., 2003, 103, 27

Rhodium and Ruthenium Isomerizations

$\begin{array}{c} R^{3} \\ R^{1} \\ R^{2} \\ R^{2} \\ OH \end{array} \xrightarrow{R^{4}} \begin{array}{c} [Rh(diphosphine)L_{n}][ClO_{4}], \ 0.5mol\% \\ THF, \ 60^{\circ}C, \ 24h \\ R^{2} \\ R^{2} \\ O \end{array} \xrightarrow{R^{3}} \begin{array}{c} R^{4} \\ R^{2} \\ R^{2} \\ O \end{array}$						
\mathbb{R}^1	R ²	\mathbb{R}^3	\mathbb{R}^4	diphosphine	conversion	selectivity
Me	Me	Н	Н	$BINAP^{a}$	64	80
Me	Me	Н	Н	$BINAP^{b}$	88	61
Me	Me	Н	Н	DPPB^{b}	50	24
Me	Me	Н	Н	DIPB^{b}	42	20
Η	Н	Me	Н	$BINAP^{b}$	99	90
Me	Н	Н	Н	$BINAP^{b}$	87	93
Me	Me	Η	Me	$BINAP^{b}$	88	34
Η	$-CH_2-$	Н	$-(CH_2)_2-$	$BINAP^{b}$	82	98

^{*a*} (COD) was used as a ligand. ^{*b*} Solvent molecules act as ligands to themetal complex. DPPB = $Ph_2P(CH_2)_4PPh_2$; DIPB = $(i \cdot Pr)_2P(CH_2)_4P(i \cdot Pr)_2$.

R₄ = alkyl, aryl

R ¹	R ⁴	cat	time (h)	yield (%)
Ph	Н	а	8	90
Н	Су	а	1.5	92
Н	$Ph(CH_2)_2$	а	2	81
Ph	$n-C_4H_9$	а	9	23
Ph	$n-C_4H_9$	b	2	83
Н	$CH_2 = CH - (CH_2)_8 -$	а	1	87
Н	$HOCH_2 - (CH_2)_9 -$	а	1	52
Н	$HOCH(Me) - (CH_2)_8 -$	а	1.5	90
Н	$Me-(CH_2)_{10}-$	а	2.5	91
<i>n</i> -C ₁₀ H ₂₁	$Ph(CH_2)_2$	а	24	53
<i>n</i> -C ₁₀ H ₂₁	$Ph(CH_2)_2$	b	3	81
Н	$CH_2 = CHCH(OH) - (CH_2)_8 -$	а	1.5	73
Н	$CH_2 = CHCH(OMe) - (CH_2)_8 -$	а	1	93
	$-(CH_2)_5-$	а	24	31
	$-(CH_2)_5-$	b	3	47
	$-(CH_2)_9-$	а	9	84
	$-(CH_2)_9-$	b	2.5	87
<i>n</i> -C ₅ H ₁₁	$CH_2 = C(Me) - (CH_2)_2 -$	b	3	82
<i>n</i> -C ₄ H ₉	$CH_2 = CH - (CH_2)_2 -$	b	8	77
				(2 isomers)
<i>n</i> -C ₄ H ₉	$Me-CH(OH)-(CH_2)_8-$	b	10	69
	$-CH(OH)-(CH_2)_8-$	b	4	35
	$-CH(OAc) - (CH_2)_8 -$	b	3	86
	$-CH_2OCO-(CH_2)_6-$	b	6.5	28

JACS, 1993, 115, 2027

Chem. Rev., 2003, 103, 27

Asymmetric Isomerizations

Chem. Rev., 2003, 103, 27

Ir Catalyzed Isomerizations in the Mazet Group

L. Mantilli, C. Mazet, Tetrahedron Lett., 2009. 50, 4141

Conversion determined by ¹H NMR

Selected Substrate Scope

Title Paper - Catalyst Development

6a: $R_1 = Cy$; $R_2 = i$ -Pr 6b: $R_1 = t$ -Bu; $R_2 = i$ -Pr 6c: $R_1 = Cy$; $R_2 = CH_2$ Ph 6d: $R_1 = t$ -Bu; $R_2 = CH_2$ Ph 6e: $R_1 = Cy$; $R_2 = Ph$ 6f: $R_1 = t$ -Bu; $R_2 = Ph$ 6g: $R_1 = 1$ -Ad; $R_2 = Ph$ 6h: $R_1 = Cy$; $R_2 = t$ -Bu 6i: $R_1 = t$ -Bu; $R_2 = t$ -Bu 6i: $R_1 = 1$ -Ad; $R_2 = t$ -Bu

L. Mantilli, et. al., ACIE, early view

		[ir] (:	5 mol%)			
_	7 OF	H 5 mir de	n H ₂ , THF gassed	8	°0	
Entry ^[a]	Catalyst	T [°C]	<i>t</i> [h]	Conv. [%] ^[b]	ee [%] ^[c]	
1	(S)- 2	23	18	< 5	n.d.	
2	(R)- 3	23	18	< 5	n.d.	
3	(S)-4	23	18	< 5	n.d.	
4	(R)- 5	23	18	19 ^[d]	5 (S)	
5	(S)- 6 a	23	18	98	11 (<i>R</i>)	
6	(S)- 6b	23	18	75	28 (S)	
7	(S)- 6c	23	2	> 99	30 (S)	
8	(S)-6d	23	2	> 99	45 (S)	
9	(R)- 6 e	23	2	> 99	75 (R)	
10	(R)-6 f	23	2	> 99	84 (R)	
11	(R)- 6 f	-10	4	> 99	90 (R)	
12	(R)- 6 f	-30	14	> 99	90 (R)	
13	(R)- 6 f	-50	22	85	90 (R)	
14	(R)- 6 g	23	4	95	91 (R)	
15	(R)- 6 g	23	14	20	90 (R) ^[e]	
16	(R)- 6 g	-10	22	6	93 (R)	
17	(S)- 6h	23	12	> 99	89 (S)	
18	(S)- 6i	23	12	98	95 (S)	
19	(S)- 6 j	23	22	75	97 (S)	

[a] Reported results are the average of at least two runs. [b] Determined by GC or ¹H NMR methods. [c] Determined by GC or SFC methods using a chiral stationary phase. Absolute configuration (shown in parentheses) based on the sign of the optical rotation and by comparison with literature data. See Ref. [3b]. [d] The remaining 81% is a 2:1 mixture of E/Z isomers of 7. [e] 2.5 mol% of the catalyst used. n.d. = not determined.

Substrate Scope

	R^1		[lr] (5 mol%)	R ¹		
	R ²	>~_oi	H 5 min H ₂ , THF degassed, 23°C	- - F	R ² 0	
Entry ^[a]	Catalyst	R۱	R ²	<i>t</i> [h]	Conv. [%] ^[b]	ee [%] ^[c]
1	(R)- 6 f	iPr	4-Me-C ₆ H₄	22	50	56 (R)
2	(R)- 6 g	<i>i</i> Pr	4-Me-C ₆ H₄	22	84	86 (R)
3	(S)- 6j	<i>i</i> Pr	4-Me-C ₆ H ₄	22	71	95 (S)
4	(R)- 6 g	iPr	4-MeO-C ₆ H ₄	22	>99	90 (R)
5	(S)- 6j	iPr	$4-MeO-C_6H_4$	22	91	94 (S)
6	(R)- 6 g	<i>i</i> Pr	4-Cl-C ₆ H ₄	22	88	82 (R)
7	(S)- 6j	iPr	4-Cl-C ₆ H ₄	22	60	94 (S)
8	(R)- 6 f	Me	C ₆ H₅	22	30	34 (S)
9	(R)- 6 g	Me	C ₆ H₅	22	10	57 (S)
10	(S)- 6h	Me	C ₆ H₅	22	< 5 ^[d]	n.d.
11	(R)- 6 f	Et	C₅H₅	8	35	60 (S)
12	(R)- 6 g	Et	C₅H₅	22	30	73 (S)
13	(R)- 6 f	Су	C ₆ H₅	6	78	87 (R)
14	(R)- 6 g	Су	C ₆ H₅	6	85	94 (R)
15	(S)- 6j	Су	C₀H₅	22	88	98 (S)
16	(R)- 6 g	tBu	C₀H₅	22	80	99 (R)
17	(S)- 6j	tBu	C₀H₅	22	81	>99 (S)
18	(R)- 6 f	Me	Су	22	70	60 (S)
19	(R)- 6 g	Me	Су	22	90	68 (S)
20	(S)- 6j	Me	Су	18	25	76 (R)
21	(R)- 6 g	Ph	<i>i</i> Pr	22	26 ^[e]	46 (S)
22	(R)- 6 g	Ph	Me	22	18	25 (R)

[a] Reported results are the average of at least two runs. [b] Determined by GC or ¹H NMR methods. [c] Determined by GC or SFC methods using a chiral stationary phase. Absolute configuration (shown in parentheses) based on the sign of the optical rotation and by comparison with literature data. See Ref. [3b]. [d] A 3:1 mixture of E/Z isomers was recovered. [e] The remaining 74% is a 3.5:1 mixture of E/Z isomers.

Crystal Structure and NMR Studies of Catalyst

¹H NMR of active catalyst to determine the orientation of the hydride in the complex

Catalyst Mechanism

Mechanism based on analogy with Stork and Crabtree's studies of directed hydrogenation by Crabtree's catalyst

Conclusions

• Developed a variety of asymmetric catalysts for the isomerization of allylic alcohols into chiral carbonyl compounds.